The modular multiples of diameters of Stonehenge circles are Pell numbers, arranged in the Pell number-pattern according to the code known today as the platonic lambda. With respect to the multiple meaning of a Pell term, they are comparable to the orbital distances of the Saturn satellites. Besides, the movement of counting with figured lambda numbers forms a track, connecting Pell terms pertinent to Stonehenge diameters, which is similar to the symbol of Saturn.

The composition of Stonehenge follows an elaborate octagram. Consequently, the diameters of Stonehenge circles are modular dimensions which can be expressed with Pell numbers used as multiples of a module, 10 'megalithic feet' long, or M (10 mf).

Pell numbers in the ratio of Stonehenge diameters, 7, 10, 12, 17, 26, 29, and 34, can be found in the first three Pell series with the aid of the code, composed of the numbers 1, 2, 3, 4, 9, 8, and 27, said by Plato to be responsible for the planetary order. In their figured

3 Pell numbers rationally approximate proportions in the composition of octagram.
4 One 'megalithic foot' equals 335 mm. See note (1). Recently, Mr F. F. Kalin has sent me an offprint of A. Thom, A. S. Thom and A. S. Thom, *Stonehenge, JHA V* (1974), 71—90, describing the 'megalithic yard', two fifth of which are close to our 'megalithic foot'; Miss Helen Teitscher informed me about the 335 mm long 'northern foot' or 'Saxon foot'. Besides, the 332.9 mm long 'Benedictine foot' or Byzantine Alexandrian foot' is described by B. Hanftmann, *Die Benedictiner als Architekten bis in die Zeit der Gotik*. Ihr Werkschuh zu 0,3329 M. *Studien und Mitteilungen zur Geschichte des Benediktiner-Ordens*, Kommissionsverlag R. Oldenburg, München 1930.
5 T. Kurent, *Stonehenge is a Platonic Cosmos Described in the Timaeus*, paper sent to the *Architectural Association Quarterly*, London;
--- Plato, *Timaeus* 35 b, c.
form⁶ the platonic code numbers point out in the clockwise movement the terms 7, 5, 12, 17, 53, 29, and 17.

If we know that a Pell number means not only itself, but also its related numbers, which are 2, 4, 8... and/or 10, 100, 1000... times larger or smaller, and that a Pell number is always an integer, the term 5 can be regarded as 10, term 53 as 26 (which is its half made whole), and term 17 as 34.

Keeping in mind the above principle, the Pell numbers of Stonehenge diameters are practically in the same ratio as the distances between Saturn and its satellites, given in 10⁵ stades⁷.

The orbital distances of Saturn satellites are:

<table>
<thead>
<tr>
<th>Saturn satellite</th>
<th>Orbital distance (10⁵ stades)</th>
<th>Orbital distance (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iapetus</td>
<td>152</td>
<td>7,56</td>
</tr>
<tr>
<td>Mimas</td>
<td>186</td>
<td>9,25</td>
</tr>
<tr>
<td>Enceladus</td>
<td>238</td>
<td>11,84</td>
</tr>
<tr>
<td>Tethys</td>
<td>295</td>
<td>14,68</td>
</tr>
<tr>
<td>Dione</td>
<td>377</td>
<td>18,76</td>
</tr>
<tr>
<td>Rhea</td>
<td>527</td>
<td>26,22</td>
</tr>
<tr>
<td>Titan</td>
<td>1220</td>
<td>60,70</td>
</tr>
<tr>
<td>Hyperion</td>
<td>1480</td>
<td>73,63</td>
</tr>
<tr>
<td>Iapetus</td>
<td>3558</td>
<td>177,02</td>
</tr>
<tr>
<td>Phoebe</td>
<td>12930</td>
<td>643,28</td>
</tr>
</tbody>
</table>

Radii of Stonehenge circles are:

<table>
<thead>
<tr>
<th>Stonehenge circle</th>
<th>Radius (megalithic ft)</th>
<th>Radius (megalithic palms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bluestone</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Sarsen</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Z-holes</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Y-holes</td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>Aubrey holes</td>
<td>26</td>
<td>5</td>
</tr>
<tr>
<td>The Bank</td>
<td>58</td>
<td>10</td>
</tr>
<tr>
<td>The Ditch</td>
<td>68</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>170</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>680</td>
<td>10</td>
</tr>
</tbody>
</table>

Compare the numbers of orbital distances (in 10⁵ stades) and the modular multiples of Stonehenge radii!

The numerical differences between the ratio of orbital distances of Saturn satellites in 10⁵ stades and the radii of Stonehenge circles in M (5mf) for the Bluestone and Sarsen circles, Z-holes, Y-holes, and Aubrey holes, in M (10mp) for the Bank and the Ditch, in M (1 mf) for the Ditch, and in M (1 mp) for the Ditch again, are tolerable.

⁷ One stade of 600 'megalithic feet' is 0.201 km long.
The radius of Saturn itself, which is 60×10^9 km, or 2.99×10^6 stades, can be numerically compared to the 28 M (5 'megalithic palms') radius of the Bluestone circle.

Visual analogy is often the source for a Greek mathematical conception. Numbers, e.g., can be triangular, oblong, square, pentagonal... cubic, pyramidal, etc, because pebbles\(^8\) can be assembled in geometrical forms. The analogy of the ancient symbol of Saturn and of the lines connecting Pell terms relevant to Stonehenge diameters adds to the conclusion that Stonehenge is a platonic, or pythagorean, or Babylonian, or maybe still older, model of Saturn.

An Afterthought. In 1847 Rev. H. M. Glover placed the building of Stonehenge in the Saturnian Golden Age which was, perhaps, a poetic rendering of a mathematical analogy. And Rev. L. Gidley, who in 1873 believed that there is a connection between Stonehenge and Saturn, was not so wrong\(^9\).

Illustration 1

Modular multiples of diameters of Stonehenge circles are terms of the first three Pell series. They are located in the Pell number-pattern according to the figured numbers of the platonic lambda. The pebbles forming lambda numbers point out the pertinent Stonehenge diameters in the clockwise movement. If the first stone covers term 7, the second one points out term 5, which means 10, the third one singles out term 12, etc. Note that term 5 stays for 10, term 53 for 26, and that the term 17 means also 34. This multiple meaning is due to the peculiar understanding of numbers and their families. A Pell number means not only itself but also its related numbers, which are 2, 4, 8... and/or 10, 100, 1000... times larger or smaller. Pell numbers are always integers and consequently one half of the the number 53 is not 26.5 but 26.

Radii of orbits of Saturn satellites in 10^8 km can be converted in 10^5 stades radii. In that case their modular multiples are numerically nearly \textit{equal} to modular multiples of Stonehenge circles. Thus, the Stonehenge radii of 7, 10, 12, 17, and 26, modules of 5 'megalithic feet' are close to orbital radii of Janus, Mimas, Enceladus, Tethis and Dione, and Rhea, which are 7.6, 9.3, 11.8 14.7 and 18.8 and 26.2, of 10^5 stades. (The greatest inaccuracy is in the 17 M radius of Y-holes circle, which simultaneously symbolizes the 14.7 and 18.8 M orbital radii of Tethyis and Dione, respectively). Radii of the Bank and of the Ditch equalling 58 and 68 modules of 10 'megalithic palms' (instead of saying 29 and 34 modules of 5 'megalithic feet') numerically resemble the 60.7 and 73.6 distance of Titan and Hyperion. The radius of the Ditch in the form of 170 M (1 'megalithic foot'), and in the form

\(^{8}\) cf. Gr. ή ψήφος and Lat. \textit{calculus} mean both, a pebble and a calculation.

680 M (1 'megalithic palm'), symbolizes also the 177 and 643 modules of 10^5 stades of Japetus and Phoebe.

Besides, the radius of 2,8 M (50 'megalithic palms') of the Bluestone circle is numerically comparable to the 2,9 of 10^5 stades, which is the radius of Saturn itself.

Thus, the ratios of scales to which the radii of rings and radii of orbits are compared overcome the enormous differences between the orbits of Saturn satellites and compress them in the model called Stonehenge.

Ljubljana.

T. Kurent.
RADII OF ORBITS OF SATURN SATELLITES in 10^5 stades

SATURN 2,9854 * 10^5 stades
JANUS 7,562
MIMAS 9,254
ENCELADUS 11,841
TETHYS 14,677
DIONE 16,756
RHEA 26,219
TITAN 60,697
HYPERION 73,632
JAPETUS 177,015
PHOEBE 643,284

RADII OF STONEHENGE RINGS in M(5 megalithic feet)

SATURN 28 M (5m.palms) BLUESTONE
JANUS 7 M
MIMAS 10 M
ENCELADUS 12 M
TETHYS 17 M
DIONE 17 M
RHEA 26 M
TITAN 58 M
HYPERION 68 M
JAPETUS 170 M (1m.p.)
PHOEBE 680 M (1m.p.)

50/23: 1 RATIO OF SCALES OF ORBITS AND RINGS

1 megalithic foot ~ 335 mm